澳门跑狗论坛

Teaching

Labs at Elementary Level Help Bring Science Alive

By Sean Cavanagh 鈥 June 03, 2008 7 min read
  • Save to favorites
  • Print
Email Copy URL

How do you judge the power of a simple science experiment? Step inside a 4th grade classroom鈥攁nd behold the near-total silence.

One recent day, elementary teacher Jamie Curbow achieved just that, as she organized her students into teams for a competition to see who could build the strongest possible miniature bridge, using plastic straws, tape, and scissors to span the distance between lab tables.

Ms. Curbow moved from bridge to bridge, testing the strength of each one in turn. She tied a tin can to a string and hung it from each bridge鈥檚 center. Then, she began slowly loading the can with golf balls.

The first bridge held three balls, the second one, nine. The higher the count, the quieter the children got.

The teacher at Prairie Creek Elementary School, just southwest of Kansas City, captivated her elementary pupils through a core science-class activity鈥攁n easy experiment鈥攖hat educators and advocates say is vital to building enthusiasm and understanding for the subject in the early grades.

State and district science standards typically call for students to take part in hands-on labs and experiments in the elementary grades. The 1996 National Science Education Standards, which were written by the National Research Council and serve as a reference for many states, emphasize similar activities.

Yet the use of even simple labs and experiments in early grades varies widely, say many observers, largely because of the pressure to devote time to other subjects, but also because elementary teachers lack experience and confidence in setting up those lessons.

Teachers here at Prairie Creek and other elementary schools in Kansas鈥 1,900-student Spring Hill district are trying to give science labs and in-class experiments more weight. The district, with the financial assistance of a grant, is carving out more time for those hands-on lessons and using science 鈥渃oaches鈥 who meet regularly with teachers like Ms. Curbow to help them craft those activities. The elementary school even sets aside a room鈥攁 lab鈥攕pecifically for science.

In the bridge project, Ms. Curbow, with help from Linda Sullivan, the district science coach, is teaching a basic lesson on the scientific process, from conducting research to running an experiment, and examining the results to see what did or did not work. And her charges are taking it very seriously.

After testing several bridges, Ms. Curbow kneels beside Group Five鈥檚 creation and begins adding golf balls to the tin can.

The record now stands at 13 balls, but Group Five is making a big push.

鈥淭en. Eleven. Twelve,鈥 Ms. Curbow says, pausing after each new ball to see if the bridge holds.

Boys and girls silently mouth the count with her, or whisper to each other. Some squeeze below the two tables, as the bridge begins to buckle and sag.

The count reaches 14鈥攁nd the bridge stands. The students erupt in cheers for the new record holder. Finally, at the 15th ball, the structure collapses with a clatter.

Science Comeback?

Before beginning the experiment, Ms. Curbow reviewed different bridge designs the students had discussed in class, such as arch, beam, and suspension models. Now, she asks the class to review the experiment. What were the features of the bridges that held up the longest, she asks?

Their straws were bunched together, one student says. Metallic scissors were used as anchors, another adds.

And the weakest bridges? 鈥淥ne of them was way too spread out,鈥 a boy tells the teacher, 鈥渙ne straw here, one straw there.鈥

Unlike students in many elementary schools, Ms. Curbow鈥檚 4th graders are conducting science in a room reserved solely for that subject. A sign on the door says 鈥淲elcome Scientists.鈥 Photos of students doing science decorate the walls. The room includes eight long lab tables, more common in high schools than in those serving early grades. It is available throughout the day, and students are encouraged to come to monitor their investigations, involving earthworms, plants, and other living things, Ms. Sullivan says.

Those efforts would probably hearten scientists and science educators, who have complained in recent years that science has been pushed out of the curriculum, particularly in the early grades. Many blame the federal No Child Left Behind Act, which requires annual testing in reading and mathematics and mandates that schools raise scores in those subjects or face increasingly stiff penalties.

But Linda Froschauer, a former president of the National Science Teachers Association, believes science labs, and science overall, are now gaining ground in elementary schools as a result of more recently implemented mandates in the federal law that apply to science.

During the 2007-08 academic year, states for the first time were required to start testing students annually in science in the 3-5, 6-9, and 10-12 grade spans. Still, schools do not face the same penalties for not raising science scores as they do in math and reading, unless states voluntarily attach such weight to science.

Many of the newly created state tests are attempting to evaluate students鈥 skills in scientific 鈥渋nquiry鈥濃攇enerally speaking, their ability to acquire knowledge through the activities and processes used by actual scientists, Ms. Froschauer said.

Labs are an obvious way to instill those skills in students of all ages, she said. 鈥淵ou have to participate in science to do that,鈥 said Ms. Froschauer, an elementary math and science curriculum leader in the 2,500-student Weston, Conn., school district.

Even without having separate rooms to conduct experiments, many elementary teachers find ways to lead students through basic hands-on activities involving plants and insects in their traditional classrooms, Ms. Froschauer added.

An obvious benefit of elementary-level hands-on activities is their ability to boost children鈥檚 enthusiasm for science, said Michael Lach, a former science director for the Chicago public school system. But teachers also need to use labs to challenge young students and connect activities to important science content, added Mr. Lach, now the officer for high school teaching and learning in the 409,000-student district.

The challenge is to move from labs that are not only 鈥渄ifferent, fun, and engaging,鈥 Mr. Lach explained, to those that are 鈥渄eveloping [a specific] kind of scientific idea.鈥

Readying Teachers

A big barrier to conducting effective science labs in elementary schools is finding teachers who are skilled enough to make them work. Ms. Curbow, 27, acknowledges that she was stronger in reading and math than science, when she graduated from college with a degree in elementary education.

But over the past two years, her confidence and skill have grown. Beginning in the 2006-07 school year, she met regularly with Ms. Sullivan, one of three science coaches in the district鈥檚 three elementary schools, who helped her plan science lessons and led those activities at first. In the academic year now ending, Ms. Curbow took the lead in those in-class activities.

鈥淚t鈥檚 very beneficial,鈥 Ms. Curbow said of the coaching. 鈥淲hat鈥檚 great about this program is, if [teachers] don鈥檛 know the answer, we admit it.鈥

The Spring Hill district鈥檚 venture is supported with a three-year, $280,000 grant from the Ewing Marion Kauffman Foundation, based in Kansas City, Mo. The foundation has awarded $15 million in grants to 13 districts across the Kansas City region, all devoted to improving math and science education.

Districts are using that money in a variety of ways, but paying for science coaches and elementary science labs is a common strategy. (The Kauffman Foundation also helps support coverage of science education in 澳门跑狗论坛.)

Staying on Task

Science labs came more easily for Cindy McGrew than for some elementary teachers. Ms. McGrew, who works at New Central Elementary School in Havana, Ill., used to be a middle school science teacher. For one of her labs, she collects, treats, and germinates prairie seeds, using a small prairie garden maintained by her 500-student school. She tests physical and chemical reactions, using household ammonia, laundry material, and Epsom salts.

Next year, she said, her school will begin using the Full Option Science System, or FOSS, a Berkeley, California-based curriculum that offers hands-on experiments for elementary students.

Ms. McGrew sympathizes with teachers who worry about their ability to keep youngsters focused鈥攁nd even safe鈥攄uring a science lab. She said she tries to seize on students鈥 enthusiasm for experiments to get them to take those lessons seriously.

鈥淚 explain that there are two ways to do science,鈥 said Ms. McGrew, referring to hands-on activities and reading about science in a textbook. 鈥淲hat do you like best?鈥 she asks them.

鈥淭hen let鈥檚 make sure we do what the teacher says, and stay on task.鈥

Coverage of new schooling arrangements and classroom improvement efforts is supported by a grant from the Annenberg Foundation.

A version of this article appeared in the June 04, 2008 edition of 澳门跑狗论坛 as Labs at Elementary Level Help Bring Science Alive

Events

This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of 澳门跑狗论坛's editorial staff.
Sponsor
Reading & Literacy Webinar
Literacy Success: How Districts Are Closing Reading Gaps Fast
67% of 4th graders read below grade level. Learn how high-dosage virtual tutoring is closing the reading gap in schools across the country.
Content provided by 
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of 澳门跑狗论坛's editorial staff.
Sponsor
Artificial Intelligence Webinar
AI and Educational Leadership: Driving Innovation and Equity
Discover how to leverage AI to transform teaching, leadership, and administration. Network with experts and learn practical strategies.
Content provided by 
This content is provided by our sponsor. It is not written by and does not necessarily reflect the views of 澳门跑狗论坛's editorial staff.
Sponsor
School Climate & Safety Webinar
Investing in Success: Leading a Culture of Safety and Support
Content provided by 

EdWeek Top School Jobs

Teacher Jobs
Search over ten thousand teaching jobs nationwide 鈥 elementary, middle, high school and more.
Principal Jobs
Find hundreds of jobs for principals, assistant principals, and other school leadership roles.
Administrator Jobs
Over a thousand district-level jobs: superintendents, directors, more.
Support Staff Jobs
Search thousands of jobs, from paraprofessionals to counselors and more.

Read Next

Teaching Opinion The Hidden Benefits of Distraction in the Classroom
Distraction can support healthy emotional regulation鈥攂ut only when properly understood. Here鈥檚 what teachers need to know.
Eliya Ahmad & Zi Jia Ng
4 min read
Concept art, idea of brain and psychology, surreal painting, conceptual illustration. Distracted mind, emotional regulation.
Jorm Sangsorn/iStock
Teaching Opinion 5 Urgent Classroom Issues for Teachers, According to Larry Ferlazzo
What educators and researchers need to know.
3 min read
Images shows colorful speech bubbles that say "Q," "&," and "A."
iStock/Getty
Teaching Opinion Struggling to Discuss the Election in Class? These 5 Steps Can Help
For many teachers, political anxiety is the elephant in the classroom. The science of emotional intelligence can offer clarity.
Marc A. Brackett & Robin S. Stern
5 min read
The elephant in the classroom.
iStock/Getty Images
Teaching Spotlight Spotlight on Effective Classroom Instruction
This Spotlight explores strategies to foster an engaging classroom environment that promotes critical thinking and knowledge building.